
Scopes with has_many and belongs_to

Defining Scopes on the Association

 class User < ActiveRecord::Base
 has_many :posts,
 -> {where(‘created_at > ?’, Time.current - 1.year)}
 end

Design Note: In general, I’d recommend not scoping associations directly like this (aka
“default scope”). This is because this can sometimes be a source of confusion. Imagine
someone doing @user.posts and wondering why older posts are not returned. Consider
this instead:

 class User < ActiveRecord::Base
 has_many :posts
 has_many :recent_posts,
 -> {where(‘created_at > ?’, Time.current - 1.year)},
 class_name: ‘Post'
 end

This way, doing @user.posts will return all posts, and @user.recent_posts will return
only ones which have been created in the past year.

Defining a Scope that References Attributes of the Association

 class User < ActiveRecord::Base
 has_many :posts
 scope :with_pending_posts,
 -> {joins(:posts).where('posts.pending = true')}
 end

With the above, you can do User.with_pending_posts, which will return all users in the
database with pending posts. If you’ve already defined a scope in the association model, you
can absolutely make use of this. In our example above, if we had a scope defined in the Post
model like:

 class Post < ActiveRecord::Base
 belongs_to :user
 scope :pending, -> { where(pending: True) }
 end

You can then do:

 class User < ActiveRecord::Base
 has_many :posts
 scope :with_pending_posts,
 -> {joins(:posts).merge(Post.pending)}
 end

For the full article, visit: https://ducktypelabs.com/using-scope-with-
associations/

Do you want to implement a scope not covered by the examples above? Email me at
sidk@ducktypelabs.com and let’s see if we can’t figure out a way to do it!

https://ducktypelabs.com/using-scope-with-associations/
mailto:sidk@ducktypelabs.com

